

Mark Scheme (Results)

Summer 2015

IAL Chemistry (WCH04)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2015 Publications Code IA041111* All the material in this publication is copyright © Pearson Education Ltd 2015

ALWAYS LEARNING

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

ALWAYS LEARNING

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	Α	1

Question Number	Correct Answer	Mark
2	С	1

Question Number	Correct Answer	Mark
3	A	1

Question Number	Correct Answer	Mark
4	С	1

Question Number	Correct Answer	Mark
5	С	1

Question Number	Correct Answer	Mark
6(a)	D	1

Question Number	Correct Answer	Mark
6(b)	В	1

Question Number	Correct Answer	Mark
7	В	1

Question Number	Correct Answer	Mark
8(a)	D	1

Question Number	Correct Answer	Mark
8(b)	С	1

Question Number	Correct Answer	Mark
9	В	1

Question Number	Correct Answer	Mark
10(a)	С	1

Question Number	Correct Answer	Mark
10(b)	Α	1

Question Number	Correct Answer	Mark
10(c)	D	1

Question Number	Correct Answer	Mark
11(a)	D	1

Question Number	Correct Answer	Mark
11(b)	С	1

Question Number	Correct Answer	Mark
11(c)	A	1

Question Number	Correct Answer	Mark
12(a)	В	1

Question Number	Correct Answer	Mark
12(b)	Α	1

Question Number	Correct Answer	Mark
12(c)	В	1

Total for Section A = 20 marks

Section B

Questio n	Acceptable Answers	Reject	Mark
Number	1 st mark: Identification of buffer		
13(a)	1 st mark: Identification of buffer		3
(i)	Any mention of buffer solution / buffering (region) (1)	Acidic buffer	
	2 nd mark: Identification of species responsible for buffering action		
	ammonia/NH ₃ and ammonium ions /NH ₄ ⁺ present (in significant concentrations) OR		
	ammonia/NH ₃ and ammonium chloride /NH ₄ Cl present (in significant concentrations) OR	Weak acid	
	weak base and salt/conjugate acid present (in significant concentrations) OR	and its conjugate base	
	B and BH ⁺ present (in significant concentrations) Can be awarded from a correct equation	HA and A ⁻	
	(1)		
	3 rd mark: For mention of how this buffer works on addition of small amounts of H ⁺ ions		
	(relatively large concentration/reservoir of) ammonia molecules react with added hydrogen ions/ H ⁺ /(hydrochloric) acid OR		
	(relatively large concentration /reservoir of weak) base reacts with added hydrogen ions / H ⁺ /(hydrochloric) acid OR		
	H^+ + $NH_3 \rightarrow NH_4^+$ Allow reversible arrow OR		
	Adding (hydrochloric) acid/H ⁺ /hydrogen ions has negligible effect on ratio $[NH_3]:[NH_4^+]$ (1)		
	Ignore references to buffering action on addition of OH ⁻ (not relevant here)		
	Ignore general descriptions of buffer solution eg resists change in pH when small amounts of acid or alkali added		

Question Number	Acceptable Answers	Mark
13(a) (ii)	Note – the equations $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ $NH_4^+ + H_2O \rightarrow NH_4OH + H^+$ score all three marks	3
	Note –the equation $NH_4^+ \rightarrow NH_3 + H^+$ scores 2 marks, but if (aq) state symbols are given, scores 3 marks	
	 1st mark: Ammonium ions /NH4⁺ present (at equivalence point) OR 	
	ammonium chloride/ammonium salt (1)	
	2nd mark Ammonium (ions) / NH ₄ ⁺ react with water /hydrolysed by water /dissociate in water	
	Ignore ammonium chloride reacts with water (1)	
	$\begin{array}{l} \mathbf{3^{rd}\ mark} \\ \mathrm{NH_4}^+ \rightarrow \mathrm{NH_3} + \mathrm{H^+} \\ \mathbf{OR} \\ \mathrm{NH_4}^+ + \mathrm{H_2O} \rightarrow \mathrm{NH_3} + \mathrm{H_3O^+} \\ \mathbf{Allow} \\ \mathrm{NH_4}^+ + \mathrm{H_2O} \rightarrow \mathrm{NH_4OH} + \mathrm{H^+} \end{array} \tag{1}$,
	Note if no other mark awarded Just 'strong acid – weak base (titration)' / ammonium chloride is the salt of a strong acid and a weak base scores (1) only	

Acceptable Answers		Mark
If final answer is 1.6(2), with correct working without working, award 4 marks	g or	4
Mol of ammonia used = $(25/1000 \times 0.024)$ = 6×10^{-4} mol		
and Mol of acid added = $(40/1000 \times 0.054)$ = 2.16×10^{-3}	(1)	
Mol of excess acid = $2.16 \times 10^{-3} - 6 \times 10^{-4}$ = 1.56×10^{-3} mol	(1)	
$[H^+] = 1.56 \times 10^{-3} / (65 / 1000) = 0.024 \text{ mol } dm^{-3}$	(1)	
$pH = -log [H^+] = 1.6(2)$	(1)	
Ignore SF except 1 SF Allow TE for 2 nd , 3 rd marks Allow TE for 4 th mark provided pH is less than 7 a is based on some use of data in question	ind it	
Alternative method for 1^{st} and 2^{nd} marks Mol of ammonia used = (25/1000 x 0.024) = $6x10^{-4}$ mol		
and Volume of acid used = $\frac{6 \times 10^{-4} \times 1000}{0.054}$ = 11.111 cm ³ Volume of acid left = 40 - 11.111 = 28.889 cm ³ Mol of excess acid = $\frac{28.889 \times 0.054}{1000}$	(1)	
$= 1.56 \times 10^{-3}$ mol	(1)	
	If final answer is 1.6(2), with correct working without working, award 4 marks Mol of ammonia used = $(25/1000 \times 0.024)$ $= 6x10^{-4} \mod 1000$ and Mol of acid added = $(40/1000 \times 0.054)$ $= 2.16x10^{-3}$ Mol of excess acid = $2.16x10^{-3} - 6x10^{-4}$ $= 1.56x10^{-3} \mod 10^{-4}$ $[H^+] = 1.56x10^{-3}/(65/1000) = 0.024 \mod 10^{-3}$ pH = $-\log [H^+] = 1.6(2)$ Ignore SF except 1 SF Allow TE for 2 nd , 3 rd marks Allow TE for 2 nd , 3 rd marks Allow TE for 4 th mark provided pH is less than 7 at is based on some use of data in question Alternative method for 1 st and 2 nd marks Mol of ammonia used = $(25/1000 \times 0.024)$ $= 6x10^{-4} \mod 1000$ Volume of acid used = $\frac{6x10^{-4} \times 1000}{0.054}$ $= 11.1111 \text{ cm}^3$ Volume of acid left = $40 - 11.111$ $= 28.889 \text{ cm}^3$ Mol of excess acid = $\frac{28.889 \times 0.054}{1000}$	If final answer is 1.6(2), with correct working or without working, award 4 marks Mol of ammonia used = $(25/1000 \times 0.024)$ = $6x10^{-4}$ mol and Mol of acid added = $(40/1000 \times 0.054)$ = $2.16x10^{-3}$ (1) Mol of excess acid = $2.16x10^{-3} - 6x10^{-4}$ = $1.56x10^{-3}$ (1) [H ⁺] = $1.56x10^{-3}/(65/1000) = 0.024$ mol dm ⁻³ (1) pH = $-\log [H^+] = 1.6(2)$ (1) Ignore SF except 1 SF Allow TE for 2^{nd} , 3^{rd} marks Allow TE for 2^{nd} , 3^{rd} marks Allow TE for 4^{th} mark provided pH is less than 7 and it is based on some use of data in question Alternative method for 1^{st} and 2^{nd} marks Mol of ammonia used = $(25/1000 \times 0.024)$ = $6x10^{-4}$ mol and Volume of acid used = $\frac{6x10^{-4} \times 1000}{0.054}$ = 11.111 cm ³ (1) Volume of acid left = $40 - 11.111$ = 28.889 cm ³ Mol of excess acid = $\frac{28.889 \times 0.054}{1000}$

Question Number	Acceptable Answers	Reject	Mark
13(b)(i)	EITHER $[H^+]^2 = 5.5 \times 10^{-13} \text{ or } [H^+] = \sqrt{5.5 \times 10^{-13}} / 7.416 \times 10^{-7}$ (1) (mol dm ⁻³)	6.13 with no working	2
	$pH = -\log\sqrt{5.5 \times 10^{-13}} (= 6.12982 / 6.13)$ (1) OR $pK_w = 12.26$ (1)		
	$pH = \frac{1}{2} pK_w (= 6.130)$ (1)		

Question Number	Acceptable Answers	Reject	Mark
13(b) (ii)	Neutral [H ⁺] = [OH ⁻] /equal amounts of H ⁺ OH ⁻ ions OR Both [H ⁺]and [OH ⁻] have increased the same amount	Acidic or alkaline for both marks	2

Total for Question 13 = 14 marks

Question Number	Acceptable Answers		Reject	Mark
14(a)	The first two marks can be scored from a diagram or a written account Suitable reaction vessel e.g. side arm conical flask / flask with delivery tubing attached via bung / side arm boiling/test tube / boiling/test tube with delivery tubing attached via bung	unt	Diagram of apparatus that will not work eg delivery tube starting in solution or apparatus not sealed for first mark only	3
	Method of gas collection e.g. gas syri upturned measuring cylinder/burette water Allow this as a label on a poorly drav diagram	over		
	Measure volume collected at time intervals / time taken to collect fixed volume Allow mention of volume and time Allow amount of gas and time Ignore measure time taken for react to go to completion	tion (1)	Measure rate at which gas is produced	
	OR A suitable open reaction vessel (but plugged with cotton wool)	(1)		
	Use of balance	(1)		
	Measure the mass at various time intervals / at a fixed time on a balanc Allow mention of mass (loss) and tin			
	Ignore heating			

Question	Acceptable Answers	Mark
Number 14(b)(i)	Any linked pair of responses. In each pair, the 2 nd mark is dependent on the 1 st mark being awarded. EITHER Reaction is endothermic /energy taken in / temperature falls	2
	Allow just "lower temperature"Ignore room temperature falls(1)	
	Decreases rate of reaction (1)	
	OR There is loss of product/gas before the apparatus is sealed (1)	
	This is greater because the reaction is at a higher concentration (of A) (1)	
	ORActive sites/surface (area) on catalystfull/blocked/saturated(1)	
	Because the reaction is at a higher concentration (of A)/ decreases rate of reaction (1)	
	Ignore references to experimental error	
	Ignore comparisons of concentrations of A and B	
	Ignore any reference to side-reactions	

Question Number	Acceptable Answers	Mark	
14(b) (ii)	0 order (1)	2	
	As increase/change in concentration does not affect the rate /rate is independent of [A] Allow graph is a horizontal line / has zero gradient (1)		
	Ignore graph is a straight line Ignore just 'there is no change in the rate' / 'rate is constant' / gradient remains constant		

Question Number	Acceptable Answers	Mark
14(c)(i)	EITHER increases reliability improves validity (of the data obtained) / confirms the initial result / to check for anomalous results Ignore References to average/precision/accuracy	1
	<pre>OR to determine order w.r.t B and/or X / to determine order w.r.t reactants / substances / to find overall order / to see the effect of B and/or X on the rate/ to see the effect of reactants/ substances on the rate/ to determine rate equation / to calculate k Allow to find out which species are in the rate determining step</pre>	

Question	Accontable Answers		Mark
Question Number	Acceptable Answers		Mark
14(c)(ii)	2nd order w.r.t B	(1)	4
	(Compare expt 1 & 2 when [X] is constant), as triples so rate increases by a factor of 9	[B]	
		(1)	
	First order w.r.t X	(1)	
	EITHER (using experiments 1 and 3 or 1 an as [B] quadruples so rate should increase by a f of 16 but increases by a factor of 32 / additional increase of x 2 due to doubling of [X] (hence first order w.r.t X)	actor	
	OR (using experiments 2 and 3 or 2 and 4) as [B] x4/3 (1.333) so rate should increase by a factor of 16/9 (1.778) but increases by 3.556 / additional increase of x2 due to doubling of [X] (hence first order w.r.t X)	3	
	Allow these explanations shown as equations		
	If C used instead of X, allow both marks for order explanation (1)	er and	
	Allow TE on order w.r.t A and B		

Question Number	Acceptable Answers	Mark
14(c) (iii)	$Rate = k[B]^{2}[X] / Rate = k[A]^{0}[B]^{2}[X]$	1
	Allow r/R for rate and <i>K</i> for <i>k</i>	
	Allow TE from b(ii) and c(ii)	

Question Number	Acceptable Answers		Mark
14(c) (iv)	$k = rate/[B]^{2}[X] = 0.08/(0.1x0.1x0.2)$ = 40	(1)	2
	dm ⁶ mol ⁻² s ⁻¹ Allow units in any order	(1)	
	Allow use of data from experiments 1, 2 & 4 Allow TE from c(iii)		

Question Number	Acceptable Answers	Mark
14(d)	Correct feature – two from	4
	Mechanism does involve (formation of) a transition state	
	Allow mechanism does involve the (formation of) an intermediate	
	Allow transition/intermediate step(1)	
	Second order overall / $S_N 2$ /both halogenoalkane and hydroxide ions involves in slow step/rds/1 st Step (1)	
	Correct curly arrow from C-Br bond to Br (1)	
	Transition state has a negative charge / correct charge Or	
	Charges on all species are correct (1)	
	Ignore references to stereochemistry Ignore references to final product correct/ lone pairs correct	
	Incorrect features – two from	
	Curly arrow should go from OH ⁻ to carbon (attached to Br as it represents movement of a lone pair of electrons) / OH ⁻ should give electrons rather than accept them Allow the arrow between C and O should be in the opposite direction (1)	
	Bonds to OH and Br should be partial bonds /dotted lines (in transition state as insufficient electrons for (five) complete bonds) / carbon can only form four full bonds (1)	
	Allow Dipole/partial charges on C-Br not shown (1)	
	Ignore Mechanism should be 1 step not 2 steps for $S_N 2$ Ignore there should be a curly arrow from C-Br bond to Br in the transition state	
	Total for Ouestion 14 =	

Total for Question 14 = 19 marks

Question Number	Acceptable Answers	Reject	Mark
15(a)	ethyl dodecanoate Allow ethyldodecanoate ethyl dodecan-1-oate	ethyl decanoate / ethyl dodecanal/ ethyl dodecate / ethanoyl dodecanoate	1

Question Number	Acceptable Answers	Mark
15(b)	Reducing (agent) Allow (source of) nucleophile	1
	Ignore source of hydride ions	

Question Number	Acceptable Answers	Mark
15(c)	Prevent further reduction / reduction of the aldehyde (to an alcohol)	1
	Allow to prevent further reaction of dodecanal /aldehyde	
	Ignore reference to rates	
	Ignore higher yield/ prevent side reactions	
	Ignore exothermic / optimum temperature	
	Ignore volatility	

Question Number	Acceptable Answers		Mark
15(d)	If final answer is 3.74 (g), with or without working, award 3 marks		3
	Moles ester = $5.26 / 228 = 0.02307$ mol NOTE : Do not allow this rounded to 0.02	(1)	
	EITHER So mass of aldehyde at 100% = 0.02307×184 = $4.2449 (g)$	(1)	
	But yield is 88%, so actual mass = 4.245 x 0.88 = 3.7355 / 3.74 (g) Allow 3.73 g if 4.24 g of aldehyde used	(1)	
	OR But yield is 88%, so actual moles = 0.02307 x 0.88 = 0.02(03)	(1)	
	So mass of aldehyde formed = 0.0203 x 184 = 3.7355 / 3.74 /3.7 (g)	(1)	
	Allow TE for 2 nd and 3 rd marks		
	Ignore SF in final answer except 1SF		

Question Number	Acceptable Answers	Reject	Mark
16(a)(i)	(fractional) distillation / steam distillation / solvent extraction Ignore filtration /use of separating funnel	recrystallisa tion	1

Question Number	Acceptable Answers		Mark
16(a) (ii)	СH ₂ OH 3C ₁₅ H ₃₁ COOCH ₃ + СНОН СН ₂ OH		2
	3 C ₁₅ H ₃₁ COOCH ₃ Allow 3 CH ₃ OOCC ₁₅ H ₃₁ Allow the correct formulae written three times Correct formula for propane-1,2,3-triol Mark independently	(1) (1)	

Question Number	Acceptable Answers	Mark
16(a) (iii)	Sodium hydroxide / potassium hydroxide / NaOH / KOH / OH ⁻ Allow sulfuric acid / H ₂ SO ₄ or other named strong acids or strong alkalis /HCI / just 'acid' / just 'base' / just 'alkali' / just H ⁺	1
	Ignore concentrations of reagents, incorrect or missing state symbols	

Question Number	Acceptable Answers	Mark
16(b)	Do not award any marks for processing the plants or seeds into bio-diesel as the question is about growing	4
	Award (1) mark for any statement in the following headings:	
	GREEN e.g. samphire / non-edible seeds / both are renewable / (produce bio-diesel that is) carbon neutral Ignore just "green / sustainable"	
	LAND e.g. samphire uses land unlikely to be used for growing other food crops / no need to cut down trees to provide land / non-edible seed take up land otherwise used to grow crops	
	WASTE e.g. non-edible seeds have no other use / would be thrown away / can only be used for oil production	
	FOOD e.g. using samphire for bio-diesel reduces availability as a food source	
	FOOD CHAIN e.g. using samphire disrupts the food chain for (marine) organisms	
	GROWING e.g. samphire doesn't need to be irrigated / can take water or nutrients from the marshland Ignore just 'easier to grow' Ignore does not need specific conditions	
	WEATHER e.g. samphire growing is subject to coastal weather	
	TECHNOLOGY e.g. using samphire needs new / improved technology OR machines to farm coastal areas OR higher transport costs (from marshland to production plant) Ignore technology for processing plants or seeds	
	WILL IT WORK? e.g. samphire gives unknown yield / use may need more research	
	To score the maximum of 4 marks, the response must include a decision about which is greener but there is no separate mark for this.	

Section C

Question Number	Accepta	able Answers					Mark
17(a)(i)		-				-	3
		CH ₃ CH ₂ CH ₂ CH ₃	O ₂	CH₃CO₂H	H ₂ O		
	Δ <i>H</i> ^e _f / kJ mol ⁻¹	-126.5	0	-484.5	-285.8		
	S ^e / J mol ⁻¹ K ⁻¹	310.1	205	159.8	69.9		
	4 / 5 va 2/3 val 0/1 val Ignore	s correct 3 mark alues correct 2 n ues correct 1 ma ues correct 0 ma values multiplio n to correct valu	narks ark arks ed by t				

Question Number	Acceptable Answers	Mark
17(a) (ii)	If answer is - 2256.6 / - 2257 (kJ mol ⁻¹), award 2 marks $[(2 \times -285.8) + (4 \times -484.5)]$ $- (2 \times -126.5)$ (1)	2
	 = - 2256.6 / - 2257 (kJ mol⁻¹) (1) Allow answer converted to J mol⁻¹ Allow TE from incorrect data in table in (a)(i) Allow (1) for cycle wrong way round eg (+) 2256.6 / (+)2257 (kJ mol⁻¹) Allow (1) for using correct values but not multiplied by balancing numbers eg -643.8 (kJ mol⁻¹) Ignore SF except 1SF 	

Question Number	Acceptable Answers	Mark
17(a) (iii)	If answer is -866.2 (J mol ⁻¹ K ⁻¹), award 2 marks	2
	$[(2 \times 69.9) + (4 \times 159.8)] - \\[(2 \times 310.1) + (5 \times 205)] $ (1)	
	-866.2 (J mol-1K-1) (1) Allow answer converted to kJ mol ⁻¹ K ⁻¹	
	Allow TE from incorrect data in table in (a)(i)	
	Allow (1) for cycle wrong way round eg (+) 866.2(J mol ^{-1} K ^{-1})	
	Allow (1) for using correct values but error(s) in balancing numbers eg -285.4 (J mol ⁻¹ K ⁻¹)	
	Ignore SF except 1SF	

Question Number	Acceptable Answers	Mark
17(a) (iv)	If answer is $(+)6706.3 \text{ J mol}^{-1} \text{ K}^{-1}$ or $(+)6.7063 \text{ kJ mol}^{-1} \text{ K}^{-1}$, award 3 marks	3
	$\Delta S_{\text{surr}} \text{ at } 298 \text{ K} = -\Delta H/\text{T}$ = - (-2256.6 x 1000) / 298 (1)	
	= 7572.483 (J mol ⁻¹ K ⁻¹) Allow rounding to 3SF or more (1)	
	Allow correct answers given in kJ mol ⁻¹ K ⁻¹ eg 7.5725 kJ mol ⁻¹ K ⁻¹	
	$\Delta S_{\text{tot}} = \Delta S_{\text{surr}} + \Delta S_{\text{sys}} / \Delta S_{\text{tot}} = -866.2 + 7572.5 / \Delta S_{\text{tot}} = (+)6706.3 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ OR	
	$-0.8662 + 7.5725 / \Delta S_{tot} = (+)6.7063 \text{ kJ mol}^{-1} \text{ K}^{-1} $ (1)	
	Allow TE from (a)(ii) and (a)(iii)	
	Ignore SF except 1SF in final answer	

Question Number	Acceptable Answers	Mark
17(a)(v)	1st mark: consideration of ΔS_{system} ΔS_{sys} is not (significantly) changed /is unchanged/remains (approximately) constant(1)	3
	2nd mark: consideration of ΔS_{surr} (Higher temperature makes) ΔS_{surr} /- $\Delta H/T$ is smaller / decreases / less positive Comment	
	Allow more negative (1) No TE if ΔS_{surr} is -ve in (a)(iv)	
	3rd mark: consideration of ΔS_{total} EITHER reduces ΔS_{tot} / makes ΔS_{tot} less positive / makes ΔS_{tot} closer to zero (so would not produce a greater yield)	
	OR ΔS_{tot} is very large (so <i>K</i> is very large) so the effect of change in temperature is negligible (1)	
	NOTE if ΔS_{surr} is -ve in (iv), then allow increases ΔS_{tot} / makes ΔS_{tot} more positive / makes ΔS_{tot} closer to zero (so would produce a greater yield).	
	NOTE IF no reference / an incorrect reference made to ΔS_{system} , then only the 2nd and 3rd marks can be awarded	

Question Number	Acceptable Answers	Mark
17(b)	Note: All we are looking for are the correct ranges, exactly as given below (i.e. the bonds do not have to be stated, as they follow from the correct ranges) Peak between 1725 – 1700 (cm ⁻¹) (would appear due to C=O group (in alkyl carboxylic acid)) Allow peak between 3300 – 2500 (cm ⁻¹) (due to OH group (in carboxylic acid))	1

Question Number	Acceptable Answers	Mark
17(c)	increase sourness / sharpness of flavour OR preservative / prevents growth of microbes / prevents food decay / prevents food decomposition /kills microbes OR acidity regulator / buffer Allow improves flavouring	1
	Ignore reduce pH/ make (slightly) acidic/just `flavouring'	

Question Number	Acceptable Answers		Mark
17(d)(i)	Working must be shown		3
	EITHER		
	% of oxygen = 40%	(1)	
	Amount of C = $52.5/12 = 4.375$ (mol) Amount of H = $7.5/1 = 7.5$ (mol)		
	Amount of $O = 40/16 = 2.5 \text{ (mol)}$	(1)	
	Ratio 1.75 C : 3 H : 1 O ≡ 7 C : 12 H : 4 O		
	Ignore SF in mol and ratios	(1)	
	% of C in $C_7H_{12}O_4 = \frac{84}{160} \times 100 = 52.5\%$	(1)	
	% of H in $C_7H_{12}O_4 = \frac{12}{160} \times 100 = 7.5\%$	(1)	
	% of O in $C_7H_{12}O_4 = \frac{64}{160} \times 100 = 40 \%$	(1)	
	OR		
	No C atoms = $\frac{52.5 \times 160}{100 \times 12}$ = 7	(1)	
	No H atoms = $\frac{7.5 \times 160}{100 \times 1}$ = 12	(1)	
	No O atoms = $\frac{40 \times 160}{100 \times 16}$ = 4	(1)	

Question Number	Acceptable Answers	Reject	Mark
17(d) (ii)	Largest/highest m/e or m/z value (is 160) OR Mass (/charge ratio) or m/e or m/z of molecular/parent ion/ $C_7H_{12}O_4^+$ (=160(=M _r)) Allow last peak / peak on rhs (is at 160) Allow peak before last (is at 160 due to M+1 peak at 161)	Highest peak Just 'there is a peak at 160'	1

Question Number	Acceptable Answers					Mark
17(d) (iii)	For 'chemical shift' column, allow any range or any single value within range and allow range in the opposite order eg 3.0-1.8					
	Feature of compound X	Chemical shift / ppm for TMS	Splitting patterns	Relativ e area below peak		
	C H ₃	0.1 - 1.9	doublet	3 (1)		
	СН	1.8 - 3.0 (1)	septuplet / heptuplet / splits into 7 / 7 splits (1)	1		
	соо н	10 - 12.0 (1)	singlet	1		
	Allow hepto indicate 7	et / septet /	sevenlet and sim	nilar word	s that	

Total for Question 17 = 23 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom